
Reducing the space of degenerate patterns in protein remote

homology detection

Matteo Comin

Department of Information Engineering

University of Padova

Padova 35131, Italy

Email: comin@dei.unipd.it

Davide Verzotto

Computational and Systems Biology

Genome Institute of Singapore,

Singapore 138672, Singapore

Email: verzottod@gis.a-star.edu.sg

Abstract—In biology the notion of degenerate pattern plays a central
role for describing various phenomena. For example, protein active
site patterns, like those contained in the PROSITE database, e.g.
[FY]DPC[LIM][ASG]C[ASG], are in general represented by degener-
ate patterns with character classes. Researchers have developed several
approaches over the years to discover degenerate patterns. Although
these methods have been exhaustively and successfully tested on genomes
and proteins, their outcome often far exceeds the size of the original
input, making the output hard to be managed and then interpreted by
refined analysis requiring manual inspection. In this article we discuss
a characterization of degenerate patterns with character classes, and
introduce the concept of pattern priority, for comparing and ranking
different patterns without gaps, together with the class of underlying
patterns, which permits to filter any set of degenerate patterns into a
new set that is linear in the size of the input sequence. We present some
preliminary results on the detection of subtle signals in protein sequences
with remote homologies. Results show that our approach drastically
reduces the number of patterns in output from a tool for protein sequence
analysis, while retaining the functional ones.
Availability: http://www.dei.unipd.it/∼ciompin/main/filtering.html

I. INTRODUCTION

In biology the notion of degenerate pattern, or indeterminate

pattern, plays a central role for describing various phenomena. For

example, protein functional patterns, like those contained in the

PROSITE database [1], e.g. [FY]DPC[LIM][ASG]C[ASG], are

in general represented by degenerate patterns with character classes,

and denote conserved sites in protein families.

The de novo discovery of degenerate patterns in protein and

genome sequences is very important, since such patterns usually

correspond to residues conserved by evolution due to some sig-

nificant structural or functional role [2], [3]. Moreover, the large

availability of biological sequences, recently achieved with high-

throughput sequencing technologies and a multitude of new protein

discoveries, has increased the number and complexity of patterns

required by scientists in order to perform a complete analysis of

biological processes. Pattern discovery techniques have been used for

a wide range of applications, from data compression [4] to protein

family detection [5], [6].

In this article we address the problem of degenerate pattern

comparison and filtering, in order to shrink the output of any pattern

discovery tool for the de novo identification of subtle biological

signals in protein sequences.

A. Motivation: Clustering Degenerate Patterns

Degenerate patterns without gaps represent highly conserved seg-

ments of more complex signatures in protein families sharing remote

homologies. To cope with the combinatorial explosion of degenerate

patterns shared by a set of protein sequences, de novo pattern

discovery tools must first shrink the search space. In this regard,

a number of different techniques have been proposed over the past

two decades [2], [3], [7], [8]. Despite that, the number of patterns in

output still remains intractable in most cases. Moreover, all pattern

discovery tools must ultimately rank the output, according to some

measure of importance.

In order to filter this output and enhance its readability, there are

two main issues. On the one hand, most signatures are very similar in

the contained degenerate patterns and therefore they must be clustered

together. On the other hand, if we are interested in a specific region of

the sequences under examination, we would like to select the most

important signature that appears in that region according to some

rule. These two issues are in practice tightly related and need to be

addressed as one.

In this article we focus our attention on degenerate patterns as the

fundamental units of functional signatures, e.g. short linear motifs
(SLiMs), in order to identify those patterns representing the same

loci, thus reducing the number of candidate solutions to be tested.

In particular, we will follow and adapt the idea of pattern minimality
introduced in [9] for exact patterns to the case of degenerate patterns.

This latter notion considers exact patterns representing particular

equivalent classes, or sets of locations, with the smallest possible

content. In the same way, we will identify the unique degenerate

pattern characterizing a set of locations with the minimal degeneracy

among the patterns given in input.

Recently, a number of ensemble methods addressing some of

these clustering issues have been proposed [10]–[13]. The general

idea is that one can integrate the outcome of several pattern dis-

covery algorithms based on sophisticated heuristics, in order to

improve the ability of finding subtle biological signals in specific

contexts. WebMotifs [10], ARCS-Pattern [11], MotifMiner [12], and

MotifVoter [13] assume that the consensus of several state-of-the-

art tools is likely to produce the actual functional pattern. They

ultimately cluster all patterns and report only those from the best

clusters. However, if none of the patterns from the individual finders

can accurately capture the transcription factor binding sites, the

performance of the ensemble methods will suffer. Although these

methods help to improve the performance of pattern finding, the

improvement is usually not significant. For example, in Tompa’s

benchmark [14] and Escherichia coli datasets, the average sensitivity

is only improved by 62%, but the average precision is reduced by

15% [13].

B. Problem Formulation

More formally, the problem we address is the following: Given a
reference sequence s, that is the concatenation of multiple protein
sequences, and a set of patterns with character classes M, that is
the outcome of one or more pattern finders, reduce the set M to

2013 24th International Workshop on Database and Expert Systems Applications

1529-4188/13 $26.00 © 2013 IEEE

DOI 10.1109/DEXA.2013.36

76

2013 24th International Workshop on Database and Expert Systems Applications

1529-4188/13 $26.00 © 2013 IEEE

DOI 10.1109/DEXA.2013.36

76

j 1 2 3 4 5 6 7 8 9 10

sj a a b e a d b a c e

j 1 2 3

pj a [a, c, d] [b, e]

j 1 2 3 4 5 6 7 8 9 10

s a a b e a d b a c e

occurrences

Fig. 1. Example of pattern. The occurrences of p in s are drawn in black.

a small number of ordered representative patterns, say U , such that
every position of s is covered by at most one pattern of U .

In this article we discuss the basic problems behind degenerate

pattern comparison and ranking in a simple and conservative fashion.

In principle there are several ways to compare degenerate patterns,

and they all use the number of occurrences and locations of patterns.

Here we propose a simple yet effective way that will be compared

with other traditional binary relations in Section V. There are

mainly three features that characterize a degenerate pattern: length,

degeneracy, and location list. A trade-off between these three features

is required in order to compare and rank all patterns [15], [16]. We

chose the combination, called pattern priority, that tries to represent

most of the functional patterns present in PROSITE. An intuitive way

to rank all patterns will be to favor degenerate patterns representing

large matching regions between sequences, that are more likely to be

functional [17], and thereafter those with the least degeneracy, which

represents the degree of divergence during evolution of sequences

and is “a prerequisite for and an inescapable product of the process

of natural selection itself” [18].

II. PRELIMINARY DEFINITIONS

A string is a sequence of symbols from an alphabet Σ. The set

of all strings over Σ is denoted by Σ∗. The length of a string s is

denoted by |s| and the i-th symbol of s is si, where 1 ≤ i ≤ |s|.
Let now s = s1s2 . . . sn be a string of length |s| = n on Σ. This is

the reference sequence and in practice will be the concatenation of

several sequences. For ease of explanation here we consider only one

sequence and in section V we will clarify how to deal with multiple

sequences. For the rest of the article, we assume that we are given a

string s on Σ of length n and a positive integer q, 2 ≤ q ≤ |s|, called

quorum. A character class C is a subset of Σ of cardinality at least

two. Let’s assume that we have several character classes Cj . We are

interested to study sequences in the form of strings with character

classes, where {2Cj} represents all non-empty subsets of the classes

Cj .

Definition 1 (Sequence) A sequence with character classes, or simply
a sequence, is a string of consecutive symbols defined on {2Cj}.

In the literature, a sequence with character classes is also called

a degenerate pattern or an indeterminate string. As of Figure 1,

s = aabeadbace, Σ = {a, b, c, d, e}, q = 3, and the two classes

are C1 = {a, c, d} and C2 = {a, b, e}, then p = a[a, c, d][b, e] is

a sequence with character classes of length k = 3. The main issue

shown in this example is that the character classes might not be a

partition of Σ. This is very common for PROSITE functional patterns,

e.g. [LIVMA][LIVMY].G[GSTA][DES]L[FI][TN][GS].

j 1 2 3

pj [a, c, d] [a, c, d] [a, b, e]

μ(p)j a [a, c, d] [b, e]

Fig. 2. Example of minimal representation of a pattern m with sequence p.

A sequence p = p1p2 . . . pk of length k is said to occur at a

location l of a string s, with 1 ≤ l ≤ n, if sl+j−1 ∈ pj for each

1 ≤ j ≤ k. A pattern m is then defined as a pair (p,Lm), where p is

a sequence that occurs at the locations given by Lm, and Lm is a set

of at least q locations of s. For instance, in Figure 1 m = (p,Lm)
is a pattern with sequence p = a[a, c, d][b, e] of length k = 3 and

location list Lm = {1, 5, 8}. More formally:

Definition 2 (Pattern, Location list) We say that m = (p,Lm) is
a pattern with sequence p = p1p2 . . . pk and location list Lm =
(l1, l2, . . . , lν), IFF: (i) |p| ≥ 2; (ii) |Lm| ≥ q; and (iii) Lm is
complete.

III. MINIMAL PATTERNS AND PATTERN PRIORITY

In this section we introduce the notions of minimality and pattern
priority. The former will be used to avoid useless characters in the

definition of a pattern, the latter as a means for comparison.

Definition 3 (Minimal representation μ(·)) Given a sequence p of
length k, the minimal representation of p is a sequence μ(p) of length
k with symbols μ(p)j =

⋃
l∈Lm

sl+j−1, for 1 ≤ j ≤ k.

Proposition 1 The minimal representation of a sequence is unique.

Since μ(p) is more specific than p, that is μ(p) cannot have

more occurrences in s than p, then the list of occurrences of μ(p)
must be the same as p. Let μ(m) = (μ(p),Lm) be the minimal

representation of a pattern m with sequence p, then the previous

observation suggests to us that μ(m) agrees with the definition of

pattern (that is, Lμ(m) is complete):

Definition 4 (Minimal pattern) The minimal representation of m,
given by μ(m) = (μ(p),Lm), is called a minimal pattern.

To have a more concrete idea about this concept, Figure 2 shows

an example of minimal representation of the pattern m = (p =
[a, c, d][a, c, d][a, b, e], {1, 5, 8}), where the reference string is s =
aabeadbace and the classes are C1 = {a, c, d} and C2 = {a, b, e}.

In this case, we say that μ(m) = (μ(p) = a[a, c, d][b, e], {1, 5, 8}) is

a minimal pattern. In practice, most of the functional patterns reported

by PROSITE are not minimal.

Let M be a set of patterns with character classes lying on the

string s. From Fact 1 we have that each pattern m ∈ M has a

unique minimal representation μ(m). Thus, one can easily check

that μ(m) = μ(m′) is an equivalence relation. Let us map all the

patterns in M into the set of their minimal version μ(M), where

each pattern m ∈ μ(M) is the minimal m = μ(m′) of some pattern

m′ ∈M. Then, the set of patterns M is partitioned into equivalence

classes by the binary relation of equality between minimal patterns.

We call μ(M) the minimal set of M. Since mapping M in

μ(M) can bring to a drastic reduction of the number of patterns,

this is in practice a first step in filtering. Now we define a simple

property of patterns with character classes, the degeneracy, that is

the number of characters in a pattern. The degeneracy of a sequence

p of length k is defined as c(p) =
∑k

j=1 |pj |. The degeneracy

of a pattern m = (p,Lm), denoted by c(m), is defined as the

degeneracy of its sequence c(p). For instance, given two sequences

7777

p = a[a, c, d][b, e] and p′ = [a, d]b[a, b], their degeneracy is

c(p) = 6 and c(p′) = 5. Therefore, the degeneracy of the pattern

m = (a[a, c, d][b, e], {1, 5, 8}) is equal to c(p), that is 6.

With this notion we can define the priority between patterns, as

a means for comparing different patterns. Note that several notions

of priority can be established at this stage. We chose a very intuitive

combination of pattern length, pattern degeneracy, and location list.

Definition 5 (Pattern priority ‘→’) A pattern m of length k has
priority over another pattern m′ of length k′, denoted m → m′,
if (1) k > k′, or (2) k = k′ and c(m) < c(m′), or (3) k = k′,
c(m) = c(m′), min{Lm \ Lm′} < min{Lm′ \ Lm}, when both
minima exist.

Theorem 1 Given any set of patterns M, its minimal set μ(M) is
totally ordered under the binary relation of pattern priority.

It can be easily checked that the binary relation of pattern priority
is irreflexive and antisymmetric. Furthermore Theorem 1 can be

proved as a consequence of the results reported in [19], [20]. From

Theorem 1 we have that all minimal patterns can be compared and

ranked. We can further observe that every minimal pattern has priority

over the patterns within its equivalence class due to property (2) of

pattern priority. Now it is clear that any set of patterns can be mapped

into its minimal representative set, and that we can build a measure

of total order over this set.

IV. UNDERLYING PATTERNS

Here we describe an application of pattern priority, the objective is

to select the most important patterns in μ(M) for each location of s,

according to our pattern priority rule. If a pattern m is selected, we

filter out all patterns with less priority that lie on the same locations

of m. If these locations are, for example, transcription factor binding

sites or coding sequences of a genome, we will select only one pattern

that best represents these locations. We say that an occurrence l of

m is tied to an occurrence l′ of m′, if the two occurrences overlap,

i.e. ([l, l+ |m| − 1]∩ [l′, l′+ |m′| − 1]) �= ∅. Otherwise, we say that

l is untied from l′.

Definition 6 (Underlying Pattern) The set of patterns U ⊆ μ(M) is
said to be underlying IFF:

(i) every pattern m in U , called an underlying pattern, has at least
q occurrences that are untied from all the untied occurrences
of other patterns in U \m, and

(ii) there does not exist a pattern m ∈ μ(M) \U such that m has
at least q untied occurrences from all the untied occurrences
of patterns in U .

This subset of μ(M) is composed only by those patterns that rank

higher in our priority rule for some location of s. The following

algorithm filters any set of patterns M into the reduced set of

underlying patterns U .

Algortihm 1
UNDERLYING PATTERN FILTERING (Input: M, q; Output: U)

1) Compute the minimal set μ(M).
2) Rank all minimal patterns in μ(M) using the pattern priority

rule.
3) At each step, select the top pattern m from μ(M):

• if all of its occurrences are tied/covered by some other
patterns already in U , discard m;

• otherwise, if m has at least q untied occurrences add m to
U and update a location vector Γs in the positions where
m appears.

The correctness of the algorithm follows from Theorem 1. Let n
be the size of the string s. During the first step, in the worst case

a pattern m can have a location list |Lm| that is O(n), and the

comparison of two ordered lists of occurrences costs O(n). Thus,

this step of the algorithm costs O(n2|M|). The second phase orders

the set of μ(M), where each comparison between two patterns can

take O(n) times, thus this step costs O(n|μ(M)| log |μ(M)|).
In the third step, for each pattern m that has been selected by our

algorithm, we store the occurrences of m in a vector of booleans Γs,

that represents the locations of s. This means that, ∀ l ∈ Lm, we

store the value TRUE in the locations Γs[l+ i], for 0 ≤ i < |m|. This

vector is then used to check if an occurrence is untied in constant

time. Thus, for each pattern in μ(M) checking for untied occurrences

and updating the vector Γs takes O(n) time. In total step 3 requires

O(n|μ(M)|) time.

In short, the total complexity of the algorithm is O(n2|M|). Note

that this complexity does not depend on the notion of pattern priority

used, thus also other binary relations can be applied with the same

complexity. If the structure of the pattern priority is considered, it is

possible to reduce the complexity using some results developed for

patterns without character classes [20]. However this is out of scope

for this article since the Underlying Pattern Filtering is very fast in

practice.

Finally, we observe that the untied occurrences of all patterns

m in U are non-overlapping. From this consideration, we have the

following result:

Corollary 1 The number of patterns in U is ≤ �n/2�, independently
of the size of M.

V. EXPERIMENTAL RESULTS

In this section we discuss the ability of underlying patterns to

efficiently capture conserved degenerate patterns. More generally,

there are two types of scenarios where the notion of underlying

patterns could be useful. The first case is when a region of interest

has already been identified, so that it is possible to analyze and

select only those patterns that are underlying with respect to that

particular region, without considering the whole set of patterns.

Another possible application is the case where we just want to filter

all patterns in M, looking at the whole sequence.

In this context we present some results for the latter scenario. We

take as input M the set of patterns extracted by Varun [7], a tool

for de novo pattern discovery. The dataset consists of six protein

families for which Varun successfully extracts the functional patterns

contained in the PROSITE signatures (release 20.85) [7]. For each

signature we select all sequences in the Swiss-Prot database that share

that signature. In summary, our dataset is the following:

1) Nickel-dependent hydrogenases (id PS00508; in short, Ni), composed by 22
sequences of 12,300 amino acids in total. This family contains two functional
signatures Ni1 = RG[FILMV]E...............[EM PQS][KR].C[GR][ILMV]C and
Ni2 = [FY]D[IP][CU][AILMV][AGS]C.

2) Coagulation factors 5/8 type C domain (id PS01286; Fa),
composed by 40 sequences of length 46,500 amino acids. Fa1 =
[FWY][ILV].[AFILV][DEGNST]......[FILV]..[IV].[ILTV] [KMQT]G and Fa2 =
[LM]R.[EG][ILPV].GC.

3) Formate and nitrite transporters (id PS01005; Form).
[LIVMA][LIVMY].G[GSTA][DES]L[FI][TN][GS] is present in 17 sequences of
length 5,300.

4) Ubiquitin-activating enzyme (id PS00865; Ubi).
P[LIVMG]CT[LIVM][KRHA].[FTNM]P appears in 36 proteins of length
25,200.

5) RNA polymerases M/15 Kd subunit (id PS01030; Poly).
[FY]C.[DEKSTG]C[GNK][DNSA][LIVMHG][LIVM] occurs in 29 sequences of
length 4,000.

6) Dbl homology (DH) domain (id PS00741; Dbl).
[LM]..[LIVMFYWGS][LI]..[PEQ][LIVMRF]..[LIVM].

7878

[KRS].[LT].[LIVM].[DEQN][LIVM]...[STM] appears in 65 sequences of
length 18,750.

In the first set of experiments we use Varun to extract patterns from

the above families of protein sequences for different quorums q. For

each family we concatenate the sequences and extract patterns from

the concatenation, thus in all the experiments the quorum q refers to

the number of occurrences in the concatenation of all sequences of

a certain family, of total length n. Then, we employ the extracted

patterns as input to our algorithm in order to compute the underlying

patterns U . All experiments were conducted on a common PC and

the filtering process requires on average less than 10 seconds.

0

1000

2000

3000

4000

5000

6000

7000

8000

5 10 15 20 22 25 30

N
um

be
r o

f M
ot

ifs

Quorum

Original Motifs

Underlying Motifs

1

10

100

1000

10000

100000

15

20

25

30

35

40

45

50

60

70

80

90

10
0

N
um

be
r o

f M
ot

ifs

Quorum

Original Motifs

Underlying Motifs

0

5000

10000

15000

20000

25000

30000

5 10 15 20 22 25 30

To
ta

l L
en

gt
h

Quorum

Original Motifs
Underlying Motifs

1

10

100

1000

10000

100000

1000000

15

20

25

30

35

40

45

50

60

70

80

90

10
0

To
ta

l L
en

gt
h

Quorum

Original Motifs

Underlying Motifs

1

10

100

1000

10000

100000

1000000

10000000

100000000

5 10 15 20 22 25 30

M
ea

n
Z-

Sc
or

e

Quorum

Original Motifs

Underlying Motifs

1.000

10.000

100.000

1000.000

15

20

25

30

35

40

45

50

60

70

80

90

10
0

M
ea

n
Z-

Sc
or

e

Quorum

Original Motifs

Underlying Motifs

(a) Family Ni (b) Family Fa

Fig. 3. Total number, sum of lengths, and mean Z-Score of the patterns
extracted using Varun and their corresponding underlying patterns, for Ni
and Fa. The dashed line in Total Length diagrams indicates the total size of
each family. Note that in (a)–Mean Z-Score and (b)–All diagrams, the ordinate
is plotted on a logarithmic scale.

For both sets of patterns M and U we compute some global

statistics. Figure 3 shows the number of patterns, the sum of their

lengths and the mean Z-Score (see [7]) for the first two protein

families Ni and Fa. The other families share the same behavior

(figure not shown). As expected, the number and sum of lengths

of the underlying patterns is always much smaller than those of the

original patterns, for which the sum of lengths abundantly exceeds

the total length of sequences under examination in both families.

Moreover, as seen above, the sum of lengths of the underlying

patterns is always bounded by the length of sequences; therefore

the filtering process is space-efficient, as expected. Another important

measure is the mean Z-Score of M and U . The Z-Score of a pattern

p is a statistical measurement of the degree of over-representation of

p with respect to the expected number of its occurrences. The mean

Z-Score is thus a global measure able to capture the average quality

of patterns in a set. In Figure 3 we can see that, for all quorums,

the average Z-Score of the underlying patterns is always greater than

those of original patterns, and in most cases the difference is one or

two orders of magnitude. To summarize, this first test confirms that

number and span of underlying patterns is much more manageable

than the original set and also that their average quality, measured by

the Z-Score, is improved.

Once we have verified that the notion of underlying is a suitable

TABLE I
MAXIMUM SIMILARITY WITH THE REFERENCE PATTERNS FOR THE

FAMILY Ni

Quorum Max Sim. Ni1 Max Sim. Ni2
(underlying/original) (underlying/original)

5 26/26 9/12
10 18/18 12/12
15 11/11 9/12
20 9/9 12/12
22 9/9 12/12
25 6/6 6/6
30 6/6 6/6

TABLE II
MAXIMUM SIMILARITY WITH THE REFERENCE PATTERNS FOR THE

FAMILY Fa

Quorum Max Sim. Fa1 Max Sim. Fa2

(underlying/original) (underlying/original)

15 11/12 11/12
20 11/12 12/12
25 12/12 8/10
30 10/12 8/10
35 10/12 9/10
40 10/12 8/8
45 12/12 8/8
50 12/12 8/8
60 10/10 8/8
70 10/10 8/8
80 9/10 8/8
90 9/10 8/8
100 9/10 8/8

filter, in a second series of experiments we test the ability to retain

meaningful patterns. We consider in detail again the first two families

Fa and Ni and the corresponding functional signatures. The other

four families show similar results and are summarized in Table III.

We consider Ni2 and Fa2 directly as degenerate patterns due to

their low number of gaps, while we split signatures Ni1 and Fa1

into two different patterns each, and compute the statistics of these

patterns accordingly. For both sets of patterns,M and U , we compute

the maximum similarity between each pattern in the set and the two

functional signatures. The similarity between two patterns m and m′

is the number of shared characters, including character classes, in the
best alignment of m versus m′, without considering indels. Tables I

and II summarize the maximum similarity, for different quorums, of

M and U with each functional signature of Ni and Fa, divided by

an upper bound on the similarity with the original sets. For example,

in the first row of Table I the quorum is 5. In this case, the maximum

similarity ofM with the functional pattern Ni1 is 26. The same value

is obtained also for the corresponding set of underlying patterns U ,

thus indicating that the pattern Ni1 is retained with the same degree

of accuracy. The values presented in Table I and II confirm that in

most cases the functional patterns, that were present in M, are also

selected in the set of underlying patterns with a similar accuracy.

In principle the binary relation of pattern priority can be replaced

by any other traditional means of comparison. To this end, we com-

pared the pattern priority rule with other standard ranking methods

that were applied to the underlying filtering step. Table III reports

the average scores for each measure for all six protein families,

where a large maximum similarity with the two PROSITE functional

signatures and a higher rank are preferable. In this context we

consider different ranking methods: lexicographic order of patterns

(lexic.), frequency (|Lm|), inverse frequency, pattern probability

assuming either an i.i.d. distribution of symbols based on amino

acid frequencies, or an equal distribution of symbols (probability no
back.), and Z-Score (computed as in [7]).

7979

TABLE III
COMPARISON BETWEEN DIFFERENT BINARY RELATIONS APPLIED TO THE

NOTION OF UNDERLYING PATTERNS

Ni1,2 Fa1,2 Form
Binary Relation Sim. Rank Sim. Rank Rank Sim.

Pattern priority 151/157 2.78 247/264 5.34 186/205 4.72
Z-Score 127/157 5.00 223/264 9.96 167/205 6.00
Probability 127/157 5.00 223/264 9.96 167/205 6.00
Probability no back. 127/157 5.00 223/264 9.96 165/205 6.20
Frequency 93/157 22.78 168/264 9.42 102/205 26.62
Inv. frequency 118/157 6.14 212/264 5.69 154/205 7.92
Lexic. order occ. 93/157 5.50 142/264 11.77 105/205 16.44

Ubi Poly Dbl
Binary Relation Sim. Rank Sim. Rank Sim. Rank

Pattern priority 190/198 3.40 215/234 4.25 498/522 5.20
Z-Score 178/198 4.74 212/234 5.86 455/522 7.10
Probability 178/198 4.74 210/234 5.92 455/522 7.10
Probability no back. 178/198 4.74 210/234 5.92 452/522 7.10
Frequency 112/198 9.75 135/234 13.69 321/522 21.35
Inv. frequency 159/198 6.00 188/234 10.10 436/522 13.74
Lexic. order occ. 112/198 12.39 126/234 13.93 308/522 22.00

We can easily see that the pattern priority applied to the notion of

underlying patterns achieves the best scores among all methods for

the detection of functional patterns. In addition, our heuristic ranks

on average the reference patterns of Ni in the top 3 out of 2,239

candidate patterns in input, and those of Fa in the top 5 out of

10,842 patterns, while for the other families the reference patterns

range from the top 3 to the top 5 patterns on average. The definition

of pattern priority was conceived especially for degenerate patterns

like those presented in this section. However, this framework can

be used in conjunction with other comparison functions designed

specifically for patterns with profiles or variable gaps, e.g. [15].

VI. CONCLUSION

In this article we have studied patterns with character classes,

introducing the notion of pattern priority and of underlying patterns.

These notions has proved to be valuable for the analysis of biological

sequences, bounding the total length of degenerate patterns in output

from any modern pattern discovery tool. Preliminary experiments on

protein families have shown a good performance of our approach as

a filter to reduce the number of patterns in output, while keeping the

functional ones.

ACKNOWLEDGEMENTS

M.C. was partially supported by the Ateneo Project CPDA110239.

REFERENCES

[1] N. Hulo, A. Bairoch, V. Bulliard, L. Cerutti, B. Cuche, E. de Castro,
C. Lachaize, P. Langendijk-Genevaux, and C. Sigrist, “The 20 years of
PROSITE,” Nucleic Acids Res., vol. 36, no. Database issue, pp. D245–
D249, 2008.

[2] L. Parida, Pattern Discovery in Bioinformatics: Theory and Algorithms,
ser. Mathematical and Computational Biology. Chapman and Hall/CRC,
2007.

[3] K. L. Jensen, M. P. Styczynski, I. Rigoutsos, and G. N. Stephanopoulos,
“A generic motif discovery algorithm for sequential data,” Bioinformat-
ics, vol. 22, no. 1, pp. 21–28, 2006.

[4] A. Apostolico, M. Comin, and L. Parida, “Bridging lossy and lossless
compression by motif pattern discovery,” Lecture Notes in Computer
Science, vol. 4123, pp. 793–813, 2006.

[5] M. Comin and D. Verzotto, “The Irredundant Class method for remote
homology detection of protein sequences,” Journal of Computational
Biology, vol. 18, no. 12, pp. 1819–1829, dec 2011. [Online]. Available:
http://dx.doi.org/10.1089/cmb.2010.0171

[6] ——, “Classification of protein sequences by means of irredundant
patterns,” BMC Bioinformatics, vol. 11, no. Suppl. 1, p. S16, 2010.

[7] A. Apostolico, M. Comin, and L. Parida, “VARUN: discovering exten-
sible motifs under saturation constraints,” IEEE/ACM Trans. Comput.
Biology Bioinformatics, vol. 7, no. 4, pp. 752–762, Oct–Dec 2010.

[8] S. Sinha and M. Tompa, “Discovery of novel transcription factor binding
sites by statistical overrepresentation,” Nucleic Acids Res., vol. 30,
no. 24, pp. 5549–5560, 2002.

[9] E. Ukkonen, “Maximal and minimal representations of gapped and non-
gapped motifs of a string,” Theoret. Comput. Sci., vol. 410, no. 43, pp.
4341–4349, 2009.

[10] K. Romer, G. R. Kayombya, and E. Fraenkel, “WebMOTIFS: automated
discovery, filtering and scoring of DNA sequence motifs using multiple
programs and Bayesian approaches,” Nucleic Acids Res., vol. 35, no.
Suppl. 2, pp. W217–W220, 2007.

[11] S. Zhang, W. Su, and J. Yang, “ARCS-Motif: discovering correlated
motifs from unaligned biological sequences,” Bioinformatics, vol. 25,
pp. 183–189, Jan 2009.

[12] M. Coatney and S. Parthasarathy, “MotifMiner: a general toolkit for
efficiently identifying common substructures in molecules,” in Proc. 3rd
IEEE BIBE. IEEE Comput. Soc., 2003, pp. 336–340.

[13] E. Wijaya, S.-M. Yiu, N. T. Son, R. Kanagasabai, and W.-K. Sung,
“MotifVoter: a novel ensemble method for fine-grained integration of
generic motif finders,” Bioinformatics, vol. 24, pp. 2288–2295, Oct 2008.

[14] M. Tompa, N. Li, T. L. Bailey, G. M. Church, and et al., “Assessing
computational tools for the discovery of transcription factor binding
sites,” Nat. Biotechnol., vol. 23, no. 1, pp. 137–144, 2005.

[15] R. J. Edwards, N. E. Davey, and D. C. Shields, “CompariMotif: quick
and easy comparisons of sequence motifs,” Bioinformatics, vol. 24,
no. 10, pp. 1307–1309, 2008.

[16] M. Comin and D. Verzotto, “Filtering degenerate patterns with applica-
tion to protein sequence analysis,” Algorithms, vol. 6, no. 2, pp. 352–370,
2013.

[17] H. Jiang, Y. Zhao, W. Chen, and W. Zheng, “Searching maximal
degenerate motifs guided by a compact suffix tree,” in Advances in
Computational Biology, ser. Adv. Exp. Med. Biol., H. R. Arabnia, Ed.
Springer, 2010, vol. 680, pp. 19–26.

[18] G. M. Edelman and J. A. Gally, “Degeneracy and complexity in
biological systems,” PNAS, vol. 98, no. 24, pp. 13 763–13 768, 2001.

[19] M. Comin and D. Verzotto, “Comparing, ranking and filtering motifs
with character classes: application to biological sequences analysis,” in
Biological Knowledge Discovery Handbook: Preprocessing, Mining and
Postprocessing of Biological Data, M. Elloumi and A. Y. Zomaya, Eds.
Wiley, to appear, 2013, ch. 13.

[20] ——, “Alignment-free phylogeny of whole genomes using underlying
subwords,” BMC Alg. Mol. Biol., vol. 7, p. 34, 2012.

8080

